The Supporting Halfspace-Quadratic Programming Strategy for the Dual of the Best Approximation Problem
نویسنده
چکیده
Algorithms for projecting a point onto the intersection of convex sets are useful subroutines for solving optimization problems with constraints. One such algorithm is the Dykstra's algorithm, which is known to be alternating minimization on the dual problem. The projection onto each convex set generates a halfspace supporting the set. It is also relatively easy to project onto the intersection of such halfspaces using quadratic programming. The main contribution of this paper is to show how to make use of such halfspaces and quadratic programming to decrease the objective value of the dual problem in a greedy manner, while maintaining convergence. Other connections to current topics in first order methods are also discussed.
منابع مشابه
Close interval approximation of piecewise quadratic fuzzy numbers for fuzzy fractional program
The fuzzy approach has undergone a profound structural transformation in the past few decades. Numerous studies have been undertaken to explain fuzzy approach for linear and nonlinear programs. While, the findings in earlier studies have been conflicting, recent studies of competitive situations indicate that fractional programming problem has a positive impact on comparative scenario. We pro...
متن کاملA Two Level Approximation Technique for Structural Optimization
This work presents a method for optimum design of structures, where the design variables can he considered as Continuous or discrete. The variables are chosen as sizing variables as well as coordinates of joints. The main idea is to reduce the number of structural analyses and the overal cost of optimization. In each design cycle, first the structural response quantities such as forces, displac...
متن کاملA New Approach for Solving Interval Quadratic Programming Problem
This paper discusses an Interval Quadratic Programming (IQP) problem, where the constraints coefficients and the right-hand sides are represented by interval data. First, the focus is on a common method for solving Interval Linear Programming problem. Then the idea is extended to the IQP problem. Based on this method each IQP problem is reduced to two classical Quadratic Programming (QP) proble...
متن کاملFGP approach to multi objective quadratic fractional programming problem
Multi objective quadratic fractional programming (MOQFP) problem involves optimization of several objective functions in the form of a ratio of numerator and denominator functions which involve both contains linear and quadratic forms with the assumption that the set of feasible solutions is a convex polyhedral with a nite number of extreme points and the denominator part of each of the objecti...
متن کاملSolving A Fractional Program with Second Order Cone Constraint
We consider a fractional program with both linear and quadratic equation in numerator and denominator having second order cone (SOC) constraints. With a suitable change of variable, we transform the problem into a second order cone programming (SOCP) problem. For the quadratic fractional case, using a relaxation, the problem is reduced to a semi-definite optimization (SDO) program. The p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 26 شماره
صفحات -
تاریخ انتشار 2016